Embedder
Module for generating embeddings from diff chunks.
logger
module-attribute
logger = getLogger(__name__)
DiffEmbedder
Generates embeddings for diff chunks.
Source code in src/codemap/git/semantic_grouping/embedder.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
|
__init__
__init__(config_loader: ConfigLoader) -> None
Initialize the embedder with configuration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
config_loader
|
ConfigLoader
|
ConfigLoader instance for embedding configuration. |
required |
Source code in src/codemap/git/semantic_grouping/embedder.py
20 21 22 23 24 25 26 27 28 29 30 |
|
config_loader
instance-attribute
config_loader = config_loader
preprocess_diff
preprocess_diff(diff_text: str) -> str
Preprocess diff text to make it more suitable for embedding.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
diff_text
|
str
|
Raw diff text |
required |
Returns:
Type | Description |
---|---|
str
|
Preprocessed text |
Source code in src/codemap/git/semantic_grouping/embedder.py
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
|
embed_chunk
async
embed_chunk(chunk: DiffChunk) -> ndarray
Generate an embedding for a diff chunk using Voyage AI.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
chunk
|
DiffChunk
|
DiffChunk object |
required |
Returns:
Type | Description |
---|---|
ndarray
|
numpy.ndarray: Embedding vector |
Source code in src/codemap/git/semantic_grouping/embedder.py
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
|
embed_contents
async
embed_contents(contents: list[str]) -> list[float | None]
Generate embeddings for multiple content strings.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
contents
|
list[str]
|
List of text content strings to embed |
required |
Returns:
Type | Description |
---|---|
list[float | None]
|
List of embedding vectors or None for each content |
Source code in src/codemap/git/semantic_grouping/embedder.py
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
|
embed_chunks
async
Generate embeddings for multiple chunks using efficient batch processing.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
chunks
|
list[DiffChunk]
|
List of DiffChunk objects |
required |
Returns:
Type | Description |
---|---|
list[tuple[DiffChunk, ndarray]]
|
List of (chunk, embedding) tuples |
Source code in src/codemap/git/semantic_grouping/embedder.py
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
|